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A dynamic model of a rotor system with hydrodynamic plain bearings in which account has been taken of the
actually existing phenomenon of the circular anisotropy of the rigidity of hydrodynamic plain bearings has
been proposed. The operation of the rotor system has been modeled with the use of uniformity distributed se-
quences and the region of states of the system representing a set of instantaneous positions of the center of
the end rotor surface by which the accuracy of its rotation is evaluated has been obtained.

Supports with hydrodynamic and hydro- and aerostatic plain bearings have gained wide acceptance in different
technological systems. These are metal-cutting machine tools, generating equipment for electric power stations, pumps
of different types, centrifuges, etc. The precision longevity and normal operating period of different types of rotor
equipment are largely determined by the precision and the operating period of plain bearings (supports).

The necessity of improving the precision characteristics of bearings and extending their operating period is
dictated not only by the increasingly more accelerating growth in the level of requirements imposed on the quality and
competitiveness of newly created machines and mechanisms but also by the current tendency of transition to estab-
lishing "service life by their state." This is due to the fact that it has become necessary at present to extend the oper-
ating period of functioning equipment that has already exhausted or is exhausting its design service life. The efficiency
of solution of these problems depends on the correctness of the evaluation of the state of the equipment, which usually
represents a multiparametric system with several figures of merit.

Hydrodynamic bearings possessing a number of substantial advantages as compared to other kinds of bearings
are frequently the most efficient (and sometimes the only) technical solution ensuring the required characteristics of
rotor systems [1]. Figure 1 gives the factors influencing the precision of a rotor system with hydrodynamic plain bear-
ings. All of them can be subdivided into external and internal factors. Among the external factors are the action of the
external medium, which can be expressed in any foreign vibrational processes, for example, from nearby equipment,
and in the thermal radiation from the equipment, the heating system of the shop, solar heat, etc., and the dynamic and
thermal actions of the machine on which the rotor is mounted on the rotor itself.

The internal factors can be subdivided into structural-technological and operating factors. Among the first are,
in particular, the architecture and structural dimensions of the rotor system, the initial lack of precision of the compo-
nents of the bearings and the rotor itself, clearances established in assembling the unit, and the initial rigidity of the
bearing’s structure. Among the second are the rotational velocity of the rotor, the intrinsic heating of the rotor, for ex-
ample, from rubbing in bearings, the viscosity of the working fluid in the bearing chamber and the viscosity change
due to the heating of this chamber, the rigidity of the oil layer and the running clearance which is established in the
bearing in rotation of the shaft, and the disbalance of the rotor as a unit and its change with wear of the supports.
The initial disbalance of the rotor is, certainly, a structural-technological factor but it changes in operation, and this
enables us to classify the disbalance with operating factors [2].

We consider a standard rotor unit (used in mechanical engineering) with a driving pulley on one end of the
shaft and radial load on the other as a particular case of a rotor system. To investigate of the accuracy of the rotation
of a rotor in hydrodynamic plain bearings let us consider the rotor unit as a dynamic system with elastic supports with
viscous damping which has localized masses and is loaded by radial forces and forces from the rotary drive and from
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the disbalance of rotating masses. The vibrations of such a system can be described by a system of differential equa-
tions.

In constructing the dynamic model, we have made the following assumptions:
(1) The rotor may be considered to be a perfectly rigid body, since the rigidities of its supports are several

times lower than the flexural rigidity of the shaft itself; consequently, its elastic displacements are insignificant as com-
pared to such caused by the pliability of the supports;

(2) The level of vibrations of the rotor in the case of the working rotational velocity is determined mainly by
its disbalance;

(3) The rigidity of hydrodynamic plain bearings possesses circular anisotropy.
The design diagram of the rotor system, employed for construction of the dynamic model, is presented in Fig.

2a. The arrangement of segmentary shells in the supports and the direction of action of the forces is shown in Fig.
2b.

To compose the system of differential equations of motion of the rotor [3] we select the coordinate vector

z
τ
 = (z1, z2) ,

where z1 = x1 + iy1 and z2 = x2 + iy2, and the coordinates of displacement of the shaft in the first and second supports
are as follows: (x1, y1) and (x2, y2).

The equations of motion are

M
l

 (z
..

1l2 − z
..

2l1) + c1z1 + c2z2 + h1z
.
1 + h2z

.
2 = ω2

 exp (iωt) (m1ε1 + m2ε2 exp (iγ)) + R − iG − iN2 ;

Fig. 1. System analysis of the factors influencing the operating period of a
rotor unit.
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1) + c1z1l1 + c2z2l2 + h1z

.
1l1 + h2z

.
2l2 =

= ω2
 exp (iωt) (m1ε1s1 + m2ε2s2 exp (iγ)) + Rl3 − iN2l4 .

(1)

We introduce the notation

c1z1 = F1 ,   c2z2 = F2 ,   h1z
.
1 = H1 ,   h2z

.
2 = H2 ,

taking into account that

exp (iωt) exp (iγ) = cos (ωt + γ) + i sin (ωt + γ) ,

we project Eq. (1) onto the coordinate axes X and Y. In this case the mathematical dynamic model will have the form

M
l

 (x
..

1l2 − x
..

2l1) + F1x + F2x + H1x + H2x = ω2
 (m1ε1 cos ωt + m2ε2 cos (ωt + γ)) − R cos ϕ0 ;

M
l

 (y
..

1l2 − y
..

2l1) + F1y + F2y + H1y + H2y = ω2
 (m1ε1 sin ωt + m2ε2 sin (ωt + γ)) − R sin ϕ0 − G − N2 ;

− 
Ipω

l
 (x

.
1 − x

.
2) + 

Ie

l
 (x

..
2 − x

..
1) + F1xl1 + F2xl2 + H1xl1 + H2xl2 =

= ω2
 (m1ε1s1 cos ωt + m2ε2s2 cos (ωt + γ)) − R cos ϕ0l0 ;

− 
Ipω

l
 (y

.
1 − y

.
2) + 

Ie

l
 (y

..
2 − y

..
1) + F1yl1 + F2yl2 + H1yl1 + H2yl2 =

= ω2
 (m1ε1s1 sin ωt + m2ε2s2 sin (ωt + γ)) − R sin ϕ0l3 − N2l4 .

(2)

The rigidity of each plain bearing can be represented as the sum of two series-connected rigidities: the oil-
wedge rigidity Coil and a constant structural rigidity Cstr. The total rigidity for each shell of a multiwedge support is
determined by the formula [4]

c = 
CoilCstr

Coil + Cstr
 ,

Fig. 2. Design diagram of the rotor system (a), arrangement of the segmentary
shells, and directions of action of the forces (b).
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where Coil can be found in terms of the force developing in the support and the shift of the center of the rotor under
its action. For each shell of the bearing the force developing in the oil wedge can be calculated from the expression
[4]

P = 
5.1⋅10

−2
 µnDshBsh

2
LCL

δ2
 

1 − 

2e
δ

 cos θ



2  . (3)

We introduce the notation a = 5.1⋅10−2µnDshBsh
2 LCL; then (3) is transformed to

P = 
a

(δ − 2e cos θ)2
 .

Taking into account that e is the value of the eccentricity of the center of the rotor shaft in the process of rotation
and denoting the coordinates of the shaft’s center at the instant of time t by X = X(t) and Y = Y(t), we obtain

e = √ x2 + y2  .

The value of the opening of the gap for each shell, as is seen in Fig. 2a, is u = e cos θ; then (3) can be transformed
and written as

P = 
a

(δ − 2u)2
 .

In view of the symmetry of the three shells, we drop the constant component a ⁄ δ2 in this expression; then P becomes
equal to

P = 
a

(δ − 2u)2
 − 

a

δ2
 = 

4au (δ − u)

δ2
 (δ − 2u)2

 .

Solving this equation for u, we find

 2u − δ  = 
δ √a

√a + Pδ2
 ⇒  u = 

1

2
 



δ + 

δ √a
√a + Pδ2




 .

If account is taken of the structural rigidity, the total shift of the shaft under the action of the resultants of external
forces will be equal to

u = 
P

Cstr
 + 

1
2

 



δ + 

δ √a

√a + Pδ2




 .

Now we can determine the force F(u) corresponding to the shift u of the bearing shell:

2F (u) + Cstrδ 



1 + 

√a

√ a + F (u)  δ2



 = 2Cstru .

We introduce the notation

W = √ a + F (u) δ2

aδ2  = √1

δ2 + 
F (u)

a
 ,
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whence

F (u) = 

W

2
 − 

1

δ2



 a ,

then

2W
2
a − 

Cstr

W
 + Cstr (δ − 2u) + 

2a

δ2  = 0 ,   W
3
 = W 

Cstrδ
2
 (δ − 2u) − 2a

2aδ2  + 
Cstr

2a
 = 0 .

There exists a unique solution of the equation of the form W3 + ρW + q = 0; it is prescribed by the formula

W = 
3√ − 

q
2

 + 
3

√



ρ
3





3

 + 

q
3





2

 − 
3√q

2
 + 

3

√



ρ
3





3

 + 


q
2





2

 .

For the force F(u) we obtain the expression

F (u) = 




















3√ Cstr

4a
 + √




ρ

3





3

 + 
Cstr

2

16a
2  − 

3√− 
Cstr

4a
 + √




ρ

3





3

 + 
Cstr

2

16a
2










2
 − 

1

δ2









  a ,

where

ρ = 
Cstrδ

2
 (δ − 2u) − 2a

2aδ2
 .

To simplify F(u) we expand it in powers u in the vicinity of the point u = 0. Then, disregarding terms of
order O(u3), we obtain

F (u) = a1u + a2u
2
 .

Having analyzed the function Fi = F(ui), where i = 1, 100
_____

, in the vicinity of the point u = 0 and using the least-
squares method, we have

Σ 2 (a1u1 + a2ui
2
 − Fi) ui = 0 ,   Σ 2 (a1ui + a2ui

2
 − Fi) ui

2
 = 0 ,

a1 Σ ui
2
 + a2 Σ ui

3
 = Σ Fiui ,   a1 Σ ui

3
 + a2 Σ ui

4
 = Σ Fiui

2
 ,

∆ = 







Σ ui
2

Σ ui
3     

Σ ui
3

Σ ui
4







 = Σ ui

2
   Σ ui

4
  − Σ ui

3


2
 ,  ∆1 = 








Σ Fiui

Σ F1ui
2     

Σ ui
3

Σ ui
4







 = Σ Fiui Σ ui

4
 − Σ Fiui

2
 Σ ui

3
 ,

   ∆2 = 







Σ ui
2

Σ ui
3     

Σ Fiui

Σ Fiui
2







 = Σ ui

2
 Σ Fiui

2
 − Σ ui

3
 Σ Fiui ,  a1 = 

∆1

∆
 ,   a2 = 

∆2

∆
 ,

then F(u) = 4.49⋅108u + 5.39⋅1012u2.
We denote the angles θ by θ1, θ2, and θ3 for all the shells of the three-shell support and determine them as

the angles between the axis of the shells and the direction of the vector of the overall radial load according to the
scheme in Fig. 2b.
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We compute the cosines and sines of the angles θ1, θ2, and θ3 for support 1 (Fig. 2b), expressing them by
the known angles α0 and α. This procedure is necessary for further solution of the equations of the model

cos θ1 = 
1
e

 (x cos α0 + y sin α0) , (4)

sin θ1 = 
1
e

 (x sin α0 − y cos α0) , (5)

cos θ2 = − 
1
e

 [x cos (α0 − 60
o) + y sin (α0 − 60

o)] , (6)

cos θ3 = − 
1
e

 [x cos (α0 − 60
o) − y sin (α0 − 60

o)] . (7)

Expressions (4)–(7) also hold for support 2, where the angle θ corresponds to the angle ξ and θ1, θ2, and θ3 corre-
spond to ξ1, ξ2, and ξ3. The values of the clearance openings are determined as follows:

for the first support

u1 = e cos θ1 ,   u2 = e cos θ2 ,   u3 = e cos θ3 ;

for the second support

v1 = e cos ξ1 ,   v2 = e cos ξ2 ,    v3 = e cos ξ3 .

With account for expressions (4)–(7) the values of the clearance openings can be represented as

u1 = x1 cos α0 + y1 sin α0 ,   u2 = − x1 cos (α0 − 60
o) − y1 sin (α0 − 60

o) ,

u3 = − x1 cos (α0 + 60
o) − y1 sin (α0 + 60

o) .

Considering the scheme of the rigidity distribution in the support, we obtain

F1x = F (u1) cos α0 + F (u2) cos (α0 + 120
o) + F (u3) cos (α0 + 240

o) ,

F1y = F (u1) sin α0 + F (u2) sin (α0 + 120
o) + F (u3) cos (α0 + 240

o) .

The rigidities for the second support F2x and F2y are computed analogously.
The damping in the supports is equal to H1x = hx

.
1, H2x = hx

.
2, H1y = hy

.
1, and H2y = hy

.
2.

To solve the equations of the mathematical model we introduce the notation of the variables

y1 = x3 ,   y2 = x4 ,   x
.
1 = x5 ,   x

.
2 = x6 ,   y

.
1 = x7 ,   y

.
2 = x8 . (8)

We also employ the notation

Ax = 
l

M
 [ω2

 (m1ε1 cos ωt + m2ε2 cos (ωt + γ)) − R cos ϕ0 − F1x − F2x − H1x − H2x] ,

Ay = 
l

M
 [ω2

 (m1ε1 sin ωt + m2ε2 sin (ωt + γ)) − R sin ϕ0 − G − N2 − F1y − F2y − H1y − H2y] ,
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Bx = 
l

Ie
 



ω2

 (m1ε1s1 cos ωt + m2ε2s2 cos (ωt + γ)) − F sin ϕ0l3 − F1xl1 − F2xl2 − H1xl1 − H2xl2 + 
Ipω

l
 (x7 − x8)




 ,

By = 
l
Ie

 
ω

2
 (m1ε1s1 sin ωt − m2ε2s2 sin (ωt + γ)) −

− F sin ϕ0l3 − N2l4 − F1yl1 − F2yl2 − H1yl1 − H2yl2 + 
Ipω

l
 (x5 − x6)




 .

(9)

With account for (8) and (9), we write (2) in the form

Ax = x
.
5l2 − x

.
6l1 ,   Ay = x

.
7l2 − x

.
8l1 ,   Bx = x

.
6 − x

.
5 ,   By = x

.
8 − x

.
7 .

Having solved these equations for x5, x6, x7, and x8, we obtain

x
.
5 = 

1
l
 (Ax + l1Bx) ,   x

.
6 = 

1
l
 (Ax + l2Bx) ,   x

.
7 = 

1
l
 (Ay + l1By) ,   x

.
8 = 

1
l
 (Ay + l2By) ;

x
.
1 = x5 ,   x

.
2 = x6 ,   x

.
3 = x7 ,   x

.
4 = x8 . (10)

Having substituted (8) and (9) into (10), we obtain the solution of the equation of motion of the rotor shaft
in hydrodynamic supports in the form of a set of coordinates of the center of the end rotor surface at the instant of
time tinst forming the set of positions of the center of the end rotor surface over the period T.

Thus, the region of states represents the set of points each of which determines the instantaneous position of
the center of the end rotor surface. The region of state is formed by simulation modeling of varied parameters in space
with the use of uniformly distributed sequences [5, 6]. The parameter space is represented by a four-dimensional hy-
perparallelepiped bounded by the range of variation of each of the parameters: rotational velocity of the rotor, dia-
metral clearance, viscosity of oil, and radial force.

It has been established that the dimensions of the region of states most strongly depend on the diametral run-
ning clearance in the hydrodynamic plain bearing. We have proposed the structure of a plain bearing with automatic
adjustment of the clearance. It allows setting of the clearance in two steps (setting of the mounting clearance on the
inoperative machine tool and fine adjustment at no-load) and control of the vibroactivity of the support in the process
of operation of a rotor unit due to the use of a magnetorheological liquid and an elastic element in the form of a sys-
tem of sylphon bellows of different diameters [7].

Based on the results of theoretical investigations, we have also developed a procedure of assembly of hydro-
dynamic supports and determination of the clearance in them [8]. The employment of the procedure at the Vistan Ma-
chine-Tool Plant (Vitebsk) made it possible to improve the precision of assembling the hydrodynamic supports of the
spindles of grinding machines, which had a positive effect on the precision longevity of spindle units.

CONCLUSIONS

1. We have proposed a mathematical model of functioning of a rotor system with hydrodynamic plain bear-
ings with allowance for the actually existing phenomenon of circular anisotropy of the rigidity of three-shell film lu-
brication bearings.

2. The operation has been modeled on the basis of a mathematical model developed with the use of uniformly
distributed sequences, which has enabled us to obtain the region of states of the rotor system in the form of a set of
points — a combination of the positions of the center of the end rotor surface.

3. Based on the investigations carried out, we have developed a procedure for determination of the clearance
in the hydrodynamic three-shell plain bearing, whose adoption has made it possible to improve the precision of assem-
bling the spindle units of grinding machines.
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NOTATION

Bsh, size of the arc of the shell’s working surface, m; c, rigidity of the support, N/m; Cstr, constant structural
rigidity, N/m; CL, coefficient allowing for the location of the reference point along the shell length; Coil, rigidity of
the oil wedge, N/m; Dsh, bore diameter of the shells, m; e, shift of the center of the shaft from the initial position
under the action of the resultant of external forces, m; F1 and F2, forces produced by the rigidities of the first and
second supports respectively, N; Ip, polar moment of inertia of the rotor, kg⋅m2; Ie, equatorial moment of inertia of the
rotor, kg⋅m2; G, weight of the wheel, kg; h1 and h2, coefficients of damping in the first and second supports; H1 and
H2, damping forces in the first and second supports; m1ε1 and m2ε2, values of the disbalances equal to the unbalanced
mass (m1 and m2) by the modulus of its eccentricity (ε1 and ε2), kg⋅m; M, mass of the rotor, kg; l, distance between
the supports, m; l1 and l2, longitudinal coordinates of the first and second supports reckoned from the center of mass
of the rotor, m; l3 and l4, coordinates of the centers of mass of the wheel and the pulley reckoned from the center of
mass of the rotor, m; L, length of the shell’s working surface, m; n, number of revolutions of the shaft per minute;
N2, force applied to the driving pulley, N; R, radial force, N; t, running time, sec; s1 and s2, longitudinal coordinates
of the planes in which the localized masses reckoned from the center of mass of the rotor are located, m; α0, angle
between the OX axes and the shell axis, deg; α, angle between the OX axis and the vector of radial load, deg; δ, dia-
metral clearance, m; γ, angle between the directions of the disbalances of masses I and II, deg; ϕ0, angle allowing for
the direction of the radial force, deg; µ, oil viscosity, MPa⋅sec; θ, coordinate of a point of the shell bearing relative
to the plane of action of the resultant of external forces, deg; ω, rotational velocity of the rotor, sec−1; P, carrying ca-
pacity of the hydrodynamic bearing, N; q and ρ, coefficients of the cubic equation. Subscripts: sh, shell; oil, oil
wedge; str, structural; p, polar; e, equatorial; L, shell length; inst, instantaneous; ⋅, first derivative; ⋅⋅, second derivative.
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